Treatment of nonmelanotic hyperpigmentation with the Q-switched ruby laser

Petra Maria Becker-Wegerich, MD, Annegret Kuhn, MD, Lucy Malek, MD, Percy Lehmann, MD, Mosaad Megahed, MD, and Thomas Ruzicka, MD Düsseldorf, Germany

Hyperpigmentation of the skin is often refractory to conventional therapies, but has significant cosmetic implications if located on visible areas. Because laser systems are capable of removing pigment deposits caused by selective photothermolysis, we addressed the issue of whether the Q-switched ruby laser could be a useful alternative in the treatment of nonmelanotic hyperpigmented skin lesions. We report the successful treatment of a patient with hyperpigmentation caused by iatrogenic human herpesvirus 8–associated Kaposi’s sarcoma and a patient with hyperpigmentation caused by long-term antimalarial therapy for cutaneous lupus erythematosus. In both patients, clinical lightening of the darkly pigmented lesions was seen after a single treatment, and a significant improvement was observed after 3 laser applications. The patients tolerated the laser therapy well without any short-term side effects and did not experience either scarring or considerable textural skin changes. Histologic examination was performed before and after laser treatment to confirm the reduction of the pigment deposits. Our data indicate that treatment of nonmelanotic skin hyperpigmentation with the Q-switched ruby laser might be a safe and powerful therapeutic method. (J Am Acad Dermatol 2000;43:272-4.)
Fig 1. A, Hyperpigmentation induced by antimalarial agents in 65-year-old patient with cutaneous lupus erythematosus. B, Significant improvement 6 weeks after 5 treatments with QSRL.

Fig 2. Photomicrograph of skin biopsy specimen taken from right forearm of first patient. (Masson-Hampel argentaffin stain; original magnification ×200.) A, Before laser treatment extensive melanin pigmentation in basal layer of epidermis and in papillary dermis. B, After laser treatment almost complete disappearance of pigmentation.

nificantly reduced after treatment (Figs 2 and 3). Interestingly, both chromophores, melanin and hemosiderin, showed absorption by the same wavelength and fluence.

The second patient was a 65-year-old white man (Fitzpatrick skin type II) with a 5-year history of lupus erythematosus tumidus, a chronic form of cutaneous lupus erythematosus. Although antimalarial agents (chloroquine [Resochin] 250 mg/day for 1 year and hydroxychloroquine [Quensyl] 400 mg/day for an additional 2 years) had led to a complete clearing of the lupus erythematosus tumidus lesions on the face, he experienced dark gray–bluish hyperpigmentation during the therapy (Fig 4, A). The pigmented skin lesions were treated 3 times with the QSRL (RubyStar) at a fluence of 8 J/cm². Each single treated lesion on the face was successfully lightened, and 6 weeks after the last laser application the hyperpigmentation was hardly visible (Fig 4, B). Before treatment, histologic findings of skin biopsy specimens taken from a pigmented lesion of the left cheek displayed extensive hemosiderin and melanin deposits in the papillary and mid dermis, which were greatly reduced after the therapy. Both patients tolerated the laser applications well without any short-term side effects, and neither experienced scarring or considerable textural changes of the skin.

Hyperpigmentation after chemotherapy of HHV8-KS or resulting from antimalarial agents is harmless, but the disfigurement it causes may be psychologically devastating to the affected patient. Our data indicate that the QSRL appears to be an appropriate method for the treatment of such hyperpigmentation of the skin; however, a correct diagnosis of the pigmented lesions before treatment is still absolutely necessary.12

REFERENCES